Biomolecular Engineering Lab.
아이디
비밀번호




Animate

 

Publications

 Total 203articles,
 Now page is 1 / 21pages
View Article     
Name   
Subject    Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents
Sun-Ki Kim, Jung-Hyun Jo, Yong-Su Jin, and Jin-Ho Seo. et al.
Bioprocess and Biosystems Engineering
Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents  

 Sun-Ki Kim, Jung-Hyun Jo, Yong-Su Jin, and Jin-Ho Seo.

Bioprocess Biosyst Eng (2017) 40:683–691


Abstract
Construction of robust and efficient yeast strains is a prerequisite for commercializing a biofuel production process. We have demonstrated that high intracellular spermidine (SPD) contents in Saccharomyces cerevisiae can lead to improved tolerance against various fermentation inhibitors including furan derivatives and acetic acid. In this study, we examined the potential applicability of the S. cerevisiae strains with high SPD contents under two cases of ethanol fermentation: glucose fermentation in repeated batch fermentations and xylose fermentation in the presence of fermentation inhibitors. During the sixteen times of repeated-batch fermentations using glucose as a sole carbon source, the S. cerevisiae strains with high SPD contents maintained higher cell viabilities and ethanol productivities than a control strain with lower SPD contents. Specifically, at the sixteenth fermentation, the ethanol productivity of a S. cerevisiae strain with two fold higher SPD content was 31% higher than that of the control strain. When the SPD content was elevated in an engineered S. cerevisiae capable of fermenting xylose, the resulting S. cerevisiae strain exhibited much 40-50% higher ethanol productivities than the control strain during the fermentations of synthetic hydrolysate containing high concentrations of fermentation inhibitors. These results suggest that the strain engineering strategy to increase SPD content is broadly applicable for engineering yeast strains for robust and efficient production of ethanol.
 
Keywords: biofuels; spermidine; xylose; repeated-batch fermentation; inhibitor tolerance




No
Category
Subject
Name
Date
Hit
203 2017     One-pot synthesis of GDP-L-fucose by a four-enzyme cascade expressed in Lactococcus lactis
Ling Li, Jin-ho Seo, Nam Soo Han et al.
Journal of Biotechnology
2017/10/16  111
202 2017     Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae
Soo-Jung Kim,Hee-Jin Sim,Jin-Ho Seo
2017/06/07  506
201 2017     Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis
Jung-Hyun Jo, Jin-Ho Seo et al.
Bioresource Technology
2017/05/25  429
200 2017     Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions
Sun-Ki Kim, Jung-Hyun Jo, Yong-Cheol Park, Yong-Su Jin, Jin-Ho Seo et al.
Enzyme and Microbial Technology
2017/03/22  878
199 2017     High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6
Taeyeon Kim, Jin-Ho Seo et al.
Applied Microbiology and Biotechnology
2017/03/20  621
198 2016     Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production
Soo-Jung Kim, Jin-Ho Seo. et al.
Applied Microbiology and Biotechnology
2017/02/03  1047
2016     Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents
Sun-Ki Kim, Jung-Hyun Jo, Yong-Su Jin, and Jin-Ho Seo. et al.
Bioprocess and Biosystems Engineering
2016/12/27  1012
196 2016     Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae
Ye-Ji Lee , Yong-Su Jin, Jin-Ho Seo. et al.
Bioresource Technology
2016/12/12  1030
195 2016     Improved production of 2’-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase, WcfB from Bacteroides fragilis
Young-Wook Chin, Jin-Ho Seo. et al.
Journal of Biotechnolog
2016/12/01  964
194 2016     Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities.
Jin-Woo Kim, Jin-Ho Seo. et al.
Biotechnology for Biofuels
2016/11/25  856
1 [2][3][4][5][6][7][8][9][10]..[21] Next
Copyright 1999-2017 Zeroboard / skin by lifesay






The information contained in this web site is subject to change without notice.
Copyright ⓒ 1996-2004Biomolecular Engineering Laboratory. All rights reserved.

Biomolecular Engineering Laboratory, Room 200-BIO 8104
Department of Agricultural Biotechnology, Seoul National University
San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea

Tel: +82-2-880-4862 Fax: +82-2-873-5095